jueves, 23 de junio de 2011

NEUMATICA



1. Estudio del compresor


Compresor:
Aparato que sirve para comprimir un fluido, generalmente aire, a una presión dada. Existen dos categorías, las máquinas volumétricas (aumento de presión por reducción de volumen), y los turbocompresores (el aire arrastrado por una rueda móvil adquiere cierta velocidad, que se traduce en un aumento de presión en la rueda y en el difusor de salida).

El compresor de pistón o de émbolo es el más antiguo y extendido, se emplea exclusivamente para presiones elevadas.

En la primera carrera del émbolo, el aire es aspirado a una presión p1 y el volumen aspirado varía de 0 a V1.

Al retroceder el émbolo, este aire es comprimido pasando de la presión p1 a la presión p2, y su volumen varía de V1 a V2.

En la segunda parte o fase de la carrera el aire es expelido a presión p2.

Debido al trabajo de compresión, que desprende gran cantidad de calor, debe refrigerarse.

Para presiones muy elevadas, se procede en varias fases, realizándose en cada una un coeficiente de compresión del orden de 6 a 7.

El compresor a émbolos libres del sistema Pescara comprende un motor diesel de dos tiempos, con dos émbolos opuestos, cada uno de los cuales está unido rígidamente a un pistón compresor. Por una de sus caras, este último impele el aire comprimido útil. El volumen de aire comprimido que queda en el cilindro, al final de la carrera forma un colchón neumático y provoca el retroceso.

Por su otra cara, el pistón compresor, durante la carrera motriz, aspira aire atmosférico que, en el retroceso, y merced al empuje del colchón neumático citado, impele hacia el motor; es el aire de barrido y el aire comburente del motor.



2.-FUNCIONAMIENTO DE UN CIRCUITO VÁLVULA – CILINDRO

Esquema:
Explicación
Una válvula de tres orificios es un interruptor empleado para controlar el flujo de aire. El tipo que se ve en la figura tiene el componente denominado conjunto rotor, que se mueve dentro de la válvula cuando se pulsa o se suelta el botón. Su función es dirigir el flujo de aire por la válvula. Cuando se pulsa el botón, se deja pasar el aire comprimido del suministro de la tubería 1 a la tubería 2 (que está conectada al cilindro).
Un cilindro de accionamiento único usa aire comprimido para producir movimiento y fuerza. Tiene un pistón que puede deslizarse "hacia arriba" y "hacia abajo". Un muelle hace subir al pistón dentro del cilindro. Sin embargo, cuando la válvula se acciona, como se muestra en el dibujo, el aire comprimido entra en el cilindro y le obliga a bajar su émbolo. El aire del otro lado sale por el orificio de escape.



3.- VÁLVULA DE TRES VÍAS Y DOS POSICIONES (3/2)

Explicación
Esquema
Mira la mitad inferior del símbolo, y no tengas en cuenta la mitad superior.
Observa que el símbolo muestra la vía 1 bloqueada, pero las vías 2 y 3 están conectadas, como en la válvula real.
Ahora no tengas en cuenta la mitad inferior del símbolo e imagina que cuando se pulsa el botón, la parte superior del símbolo se desliza por la mitad inferior, como se ve en el dibujo.
Esto indica que los orificios de la válvula real están conectados cuando se pulsa el botón.
La mitad inferior del símbolo indica las conexiones dentro de la válvula cuando no se pulsa el botón, y la superior cuando se pulsa



4.-Control Dual

Esquema
Explicación
A veces es necesario ser capaz de accionar una máquina desde más de una posición. El circuito de este dibujo funciona de esta forma. El cilindro de accionamiento único se puede activar pulsando el botón A o el B. El circuito, no obstante, tiene que contener una válvula de doble efecto.



5.-Válvula de doble efecto y conector en T

Esquema
Explicación
La válvula de doble efecto tiene tres orificios, y contiene un pequeño pistón de caucho que se mueve libremente dentro de la válvula.
Si el aire entra por un orificio, el pistón es empujado a la posición contraria y el aire no podrá salir por allí. Si la válvula de doble efecto del circuito anterior se sustituyera por un conector tipo T, el circuito no funcionaría. Ni la válvula A ni la B podrían utilizarse para activar el cilindro.



6.-FUERZAS EN UN CILINDRO DE ACCIONAMIENTO DOBLE

Esquema
Explicación
La fuerza producida por un cilindro de accionamiento doble en el sentido que consideramos positivo, no es igual a la fuerza que produce en el sentido negativo. Esto puede explicarse mirando el pistón del cilindro y recordando que: F = p . S
Observa que las superficies de las caras "frontal" y "posterior" del pistón no son iguales. La biela del pistón reduce el área de la cara "posterior". Así que aunque la presión del aire en ambos lados del pistón sea la misma, la fuerza producida será menor para un pistón en sentido negativo.


7.-Válvula de 5 vías y dos posiciones


Esquema
Explicación
No tengas en cuenta la mitad superior del símbolo durante un momento. La mitad inferior indica las conexiones dentro de la válvula cuando la palanca está en una posición determinada.
Ahora no tengas en cuenta la mitad inferior del símbolo, e imagina que cuando se mueve la palanca a la otra posición, la mitad superior del símbolo se desliza sobre la mitad inferior. Esto indica las conexiones que hay ahora dentro de la válvula.
Observa que aparece un símbolo de "palanca" en ambos extremos del símbolo de la válvula de cinco orificios o vías. Esto es algo confuso: solamente hay, por supuesto, una palanca en la válvula real.



8.-VÁLVULA 5/2 ACCIONADA POR NEUMÁTICA


Uno de los peligros asociados con el equipo neumático son las presiones tan altas que a veces se usan. Por ejemplo, el aire a presión elevada que sale por una tubería sin fijar, hace que la tubería "dé latigazos" violentamente. Esto puede provocar daños. En la industria, para mantener a los empleados alejados del peligro, se utiliza el sistema representado en el esquema. El cilindro puede funcionar a muy alta presión y los controles de las válvulas pueden ser a presión baja.
Si el aire entra a la válvula 5/2 por la izquierda, las conexiones dentro de la válvula serán como están representadas en la parte izquierda. Si el aire entra a la válvula 5/2 por la derecha, las conexiones dentro de la válvula serán como están representadas en la parte derecha.



9.-FUNCIONAMIENTO DE UN CIRCUITO CON VÁLVULA 5/2

Además de los dos cilindros de doble efecto se usan en este esquema una válvula 5/2 y un regulador de caudal o de flujo. La válvula 5/2 es accionada por una palanca.
Cuando el conjunto rotor está en la posición indicada en el diagrama 1, el aire comprimido pasa por la válvula entre los orificios 1 y 2, y el aire hace que los pistones "salgan". El aire aprisionado debajo de los pistones sale por las tuberías y por la válvula saliendo a la atmósfera por el orificio 5.
Cuando la palanca se desplaza a la otra posición, el conjunto rotor sube, como se ve en el diagrama 2.
Ahora, sigue el flujo del aire del diagrama, y verás que los pistones "entran". El aire aprisionado encima de los pistones sale.



10.-REGULADOR DE CAUDAL O DE FLUJO

Las válvulas estranguladoras con retención, conocidas como válvulas reguladoras de velocidad, son híbridas. Desde el punto de vista de la estrangulación son válvulas de flujo y como tales se las emplea en neumática. La función de retención les hace ser al mismo tiempo una válvula de bloqueo.
El regulador de flujo se alimenta con aire del suministro. Dicho regulador emite un flujo de aire controlado en una conexión en T. Una tubería de esta conexión se conecta a la válvula accionada por diafragma y la otra se deja abierta para que salga aire a la atmósfera.
Cuando la tubería de toma de aire es bloqueada por la rueda de un vehículo, la presión aumenta en la tubería y la válvula accionada por diafragma se activa, y el aire comprimido entra en el pistón.

11.-VÁLVULA ANTIRRETORNO

Son aquellas que impiden el paso del aire en un sentido y lo dejan libre en el contrario. Tan pronto como la presión de entrada en el sentido de paso aplica una fuerza superior a la del resorte incorporado, abre el elemento de cierre del asiento de la válvula.



12.-VÁLVULA DE SIMULTANEIDAD



Se utiliza para los equipos de enclavamiento y para los equipos de control. Tiene dos entradas P1 y P2 y una salida A. La señal de salida sólo está presente si lo están las dos señales de entrada.
En el caso de una diferencia en el tiempo de las señales de entrada, pasa a la salida la de presión más baja.
Siempre hay una entrada bloqueada.



13.-CIRCUITO DE CONTROL AUTOMÁTICO

Este circuito funciona automáticamente porque el pistón acciona su propia válvula de control (C) al activar las válvulas de mando A y B en cada extremo de su movimiento.
Mira el circuito e imagina que en ese momento el pistón se está volviendo positivo. Cuando sea completamente positivo, el pistón activa la válvula A, que envía una señal de aire para activar la válvula C (que conecta el orificio 1 con el orificio 2). Por tanto, el pistón enseguida empieza a volverse negativo hasta que se activa la válvula B. Entonces, la válvula B envía una señal de aire para activar la válvula C (que conecta el orificio 1 con el 4) y el pistón empieza a volverse positivo de nuevo, y de esta forma el ciclo se repite mientras se mantenga el suministro de aire.



14.-CIRCUITO DE CONTROL AUTOMÁTICO

Este circuito funciona automáticamente porque el pistón acciona su propia válvula de control (C) al activar las válvulas de mando A y B en cada extremo de su movimiento.
Mira el circuito e imagina que en ese momento el pistón se está volviendo positivo. Cuando sea completamente positivo, el pistón activa la válvula A, que envía una señal de aire para activar la válvula C (que conecta el orificio 1 con el orificio 2). Por tanto, el pistón enseguida empieza a volverse negativo hasta que se activa la válvula B. Entonces, la válvula B envía una señal de aire para activar la válvula C (que conecta el orificio 1 con el 4) y el pistón empieza a volverse positivo de nuevo, y de esta forma el ciclo se repite mientras se mantenga el suministro de aire.
Mira el circuito e imagina que en este momento el pistón A se está volviendo positivo (está saliendo el vástago).
PROBLEMA: 1º - Explica cómo funciona este circuito secuencial.
2º - ¿Dónde colocarías una válvula de "encendido-apagado" en este circuito para que cuando el circuito estuviera desconectado, los dos pistones volvieran y se pararan en sus posiciones negativas?
3º - Describe cómo podría hacerse que este sistema se desconectara automáticamente cuando el suministro de bloques de madera se agotara.

lunes, 20 de junio de 2011

GENERACION DE CORRIENTE ALTERNA

Generadores de Corriente Alterna

Componentes de un Generador de Corriente Alterna

Los principales componentes de un generador de corriente alterna son los que se muestran a continuación:
  1. Estator.
  2. Rotor.
  3. Sistema de enfriamiento.
  4. Excitatriz.
  5. Conmutador.
ESTATOR
Los elementos mas importantes del estator de un generador de corriente alterna, son las siguientes:
  • Componentes mecánicas.
  • Sistema de conexión en estrella.
  • Sistema de conexión en delta.
Componentes mecánicas. Las componentes mecánicas de un generador son las siguientes:
  • La carcaza.
  • El núcleo.
  • Las bobinas.
  • La caja de terminales.
Sistema de conexión en estrella. Los devanados del estator de un generador de C.A. están conectados generalmente en estrella, en la siguiente figura T1, T2, T3 representan las terminales de linea (al sistema) T4, T5, T6 son las terminales que unidas forman el neutro.
Sistema de conexión delta. La conexión delta se hace conectando las terminales 1 a 6, 2 a 4 y 3 a 5, las terminales de linea se conectan a 1, 2 y 3, con esta conexión se tiene con relación a la conexión estrella, un voltaje menor, pero en cambio se incrementa la corriente de linea.
EL ROTOR
Para producir el campo magnético sobre el rotor se utilizan polos que consisten de paquetes de laminaciones de fierro magnético (para reducir las llamadas corrientes circulantes) con conductores de cobre arrollados alrededor del hierro, estos polos están excitados por una corriente directa. Los polos del rotor se arreglan por pares localizados o separados 180º. Desde el punto de vista constructivo, los rotores se construyen del tipo polos salientes (baja velocidad) o rotor cilíndrico (alta velocidad).
En el rotor se encuentran alojadas las bobinas del devanado de campo que inducen el voltaje en el devanado de armadura, en donde se encuentran las bobinas que determinan si el generador es monofásico o trifásico.
Voltaje de salida monofásico. un generador que tiene un voltaje de salida monofásico, se lo denomina generador monofásico. Este voltaje de salida se obtiene con un conjunto de bobinas de armadura en el estator, si se trata de un generador monofásico de dos polos; entonces, se dice que estos polos son Norte y Sur con conductores que son parte de los conductores de armadura continuos y que llenan las ranuras del estator.
Las ranuras están separadas mecánicamente y eléctricamente por 180º, de modo que cuando el flujo proveniente del polo norte intercepta el lado A(1) del conductor, el flujo que retoma al polo sur intercepta al lado A(2) del conducto, obteniéndose como resultado la generación de un pico de voltaje entre A(1) y A(2). Cuando los polos norte y sur están perpendiculares con respecto al plano de los conductores A(1) y A(2), no hay lineas de fuerzas que intercepten los conductores y, entonces la diferencia de voltaje entre A(1) y A(2) es cero. Cuando el rotor completa una revolución (360º) se dice que ha completado un ciclo.
Fuente: El libro práctico de los generadores, transformadores y motores eléctricos - Gilberto Harper Enriquez
Ayudante de Santa1 comentarios Enlaces a esta entrada

El Voltaje Inducido

Como cada espira de la bobina de la armadura se mueve de una parte del campo a otra, eslabona un numero diferente de lineas de flujo, en este cambio en los eslabonamientos de flujo que induce un voltaje en el conductor, el voltaje mas grande se induce en el instante que este cambio es el mayor, esto es, el instante en el que el conductor corta el campo en angulo recto.
En la medida que el rotor gira a una velocidad constante, se induce una onda senoidal de voltaje, el valor de este voltaje depende de la velocidad del rotor, a mayor rapidez el voltaje es mayor.
El valor del voltaje depende tambien de la intensidad del campo magnetico, a mayor intensidad de campo, mayor voltaje inducido. Para un generador trifasico, se deben tener tres bobinas de armadura que estan desplazadas entre si 120º, a cada una de las bobinas o grupos de bobinas se los denomina Fase, de manera que se designan tres fases como: Fase A, Fase B y Fase C.La magnitud del voltaje en cada fase se calcula como:
Emax = Bm lwr (volts)
Donde
Bm: densidad de flujo maximo producido por el campo del rotor, expresado en tesla.
l: longitud de ambos lados de bobina en el campo magnetico m.
W: velocidad angular del rotor (= 2Π x frecuencia rad/seg)
r: radio de la armadura en m.

Las ondas de voltaje obtenidas para cada fase se dan por los cambios en los eslabonamientos de flujo magnatico, cuando el campo esta directamente opuesto a la bobina se da el maximo cambio en los eslabonamientos de flujo y, el maximo voltaje inducido se da en ese instante.
Fuente: El libro práctico de los generadores, transformadores y motores eléctricos - Gilberto Harper Enriquez
Ayudante de Santa0 comentarios Enlaces a esta entrada

Regla de la Mano Derecha para Generadores

Para determinar la polaridad de un generador, se deben conocer primero dos direcciones:
  1. La direccion (norte a sur) del campo magnetico.
  2. La direccion en al cual el conductor se esta moviendo y como corta al campo.
Siempre se pueden determinar direcciones por medio del uso de la regla de la mano derecha para generadores. El dedo pulgar apunta hacia arriba, el indice hacia la izquierda y el dedo medio hacia el cuerpo.
El dedo indice indica la direccion del flujo magnetico, el dedo pulgar apunta a la direccion en que se mueve el conductor y el dedo medio indica la direccion del flujo de corriente.
La operacion basica de un generador de corriente alterna consiste en una espira de alambra que se encuentra libre para girar en un campo magnetico, como se ha indicado antes, a la espira de alambre se le llama armadura y al campo magnetico se le llama el campo, la armadura se gira por un elemento que se denomina primomotor, que dependiendo de la fuente primaria de energia, aplicacion y uso, puede estar accionado por agua, vapor turbinas de viento o motores a gasolina o diesel.
La espira de la armadura se conecta a anillos rozantes, que a traves de las escobillas se conectan por conductores al exterior, en la medida que la armadura gira, se genera un voltaje que se conecta al exterior para alimentar un circuito al cual se conectan las cargas. Los generadores de corriente alterna se conocen tambien como alternadores. De la figura anterior, cuando la armadura de un generador de corriente alterna hace una rotacion completa a traves del campo magnetico, sucede lo siguiente:
  • Cuando la armadura alcanza la posicion 2, la espira (armadura) se mueve en forma perpendicular al campo magnetico, por lo tanto, corta el maximo numeros de lineas por segundo.
  • Cuando gira la armadura y pasa la posicion 2, el voltaje cae cuando ya no esta perpendicular al campo magnetico.
  • Al alcanzar la armadura la posicion 3, su movimiento es otra vez paralelo al campo y el voltaje de salida vuelve a cero.
  • Cuando la armadura gira de la posicion 3 a la 4, el voltaje vuelve a alcanzar el valor maximo.
  • Cuando la armadura completa su rotacion y pasa a al posicion 4, el voltaje cae a cero otra vez.
El voltaje generado se aplica a la carga externa alimentada a traves de un transformador o tableros como se muestra en la figura: Fuente: El libro práctico de los generadores, transformadores y motores eléctricos - Gilberto Harper Enriquez
Ayudante de Santa0 comentarios Enlaces a esta entrada

La Forma Como Trabajan los Generadores

Para estudiar la forma en como convierten los generadores la energia mecanica en energia electrica, se puede usar la siguiente figura, que representa un generador elemental, en donde el campo magnetico principal viene de un par de imanes permanentes. observese que la cara del polo norte se encuentre enfrente de la cara del polo sur, la forma curvada de los polos produce el campo mas intenso. La bobina de la armadura esta devanada sobre el rotor, cada extremo de esta bobina esta fijo a su propia banda metalica, estas bandas se llaman anillos rozantes y es donde aparece el voltaje generado. Para colectar el voltaje generado, se debe tener una trayectoria electrica de los anillos rozantes a las terminales del generador, esto se hace con pequeñas piezas metalicas o de carbon llamadas Escobillas que se encuentran fuertemente fijas a los anillos rozantes por medio de resortes, en la medida que la bobina gira, los conductores cortan el campo magnetico, esto produce el voltaje inducido en la bobina.

Fuente: El Libro Práctico de los Generadores, Transformadores y Motores Electricos - Gilberto Harper Enriquez
Ayudante de Santa0 comentarios Enlaces a esta entrada

Forma de la f.e.m. Inducida

Cuando el electroimán está en la posición horizontal de la figura, se produce el corte máximo de líneas de fuerza; cuando alcanza la posición vertical, ninguna línea de. fuerza cortará al conductor; en posiciones intermedias las líneas son cortadas oblícuamente, por lo que el valor de la f.e.m. inducida disminuirá con respecto al valor correspondiente a la posición horizontal y seguirá disminuyendo hasta anularse en la posición vertical del inductor. Al sobrepasar la posición vertical, la f.e.m. comienza a producirse otra vez pero en sentido contrario, porque el sentido del desplazamiento del campo con respecto al conductor se invierte. En esta forma la fe.m. irá aumentando su valor hasta llegar a la posición horizontal en que alcanza el valor máximo, y desde donde empieza a disminuir de nuevo, llega a la posición vertical invertida, se produce una nueva inversión del sentido de la corriente y así sucesivamente.
Una fe.m. de tales características es precisamente la alternada, por lo que la corriente inducida en la espira tendrá tal carácter. Como la espira está fija, sus bornes terminales sirven para recoger la corriente sin inconvenientes puesto que no hay contactos rozantes.
Fuente: Tratado de Electricidad - Ing. Francisco Singer
Ayudante de Santa0 comentarios Enlaces a esta entrada

Devanados y Campos en el Generador

En la siguiente figura se muestran cuatro tipos de generadores. Para generar electricidad se debe empezar con un campo magnético principal, entonces este campo se debe cortar por un conductor, el campo principal se puede producir por un imán permanente que puede ser parte del estator, tal cual lo muestra la figura A, o bien puede ser el rotor como se muestra en la figura B. el campo principal puede ser un campo electromagnético en lugar de un imán permanente, la bobina que lo produce se llama EL DEVANADO DE CAMPO, o simplemente el campo.
El campo se puede devanar sobre el estator, como se muestra en la figura C, o sobre el rotor como lo muestra la figura D. Los conductores en los que se induce la electricidad, forman el devanado de la armadura. En los generadores de corriente directa, el devanado de armadura esta sobre el rotor o parte giratoria; sin embargo, en los generadores de corriente alterna para ciertas aplicaciones, el devanado de armadura esta en la parte estacionaria (estator).

Fuente: El Libro Práctico de los Generadores, Transformadores y Motores Electricos - Gilberto Harper Enriquez
Ayudante de Santa0 comentarios Enlaces a esta entrada

Generador de Corriente Alternada

¿Que es un Generador?
Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrico entre dos de sus puntos, llamados polos, terminales o bornes. Los generadores eléctricos son máquinas destinadas a transformar la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estator). Si mecánicamente se produce un movimiento relativo entre los conductores y el campo, se generara una fuerza electromotriz (F.E.M.).
Se clasifican fundamentalmente en:
  • Primarios: Convierten en energia eléctrica la energía de otra naturaleza que reciben o de la que disponen inicialmente.
  • Secundarios: Entregan una parte de la energía eléctrica que han recibido previamente.
Principio de Funcionamiento
El funcionamiento del generador de corriente alterna, se basa en el principio general de inducción de voltaje en un conductor en movimiento cuando atraviesa un campo magnetico.
Este generador consta de dos partes fundamentales, el inductor, que es el que crea el campo magnético y el inducido que es el conductor el cual es atravesado por las líneas de fuerza de dicho campo.
Figura 1.- Disposición de elementos en un generador simple
Así, en el generador mostrado en la Figura 1, el inductor está constituido por el rotor R, dotado de cuatro piezas magnéticas, las que para simplificar son imanes permanentes, cuya polaridad se indica, y el inducido o estator con bobinas de alambre arrolladas en las zapatas polares .
Las cuatro bobinas a-b, c-d, e-f y g-h, arrolladas sobre piezas de una aleación ferromagneticas (zapatas polares) se magnetizan bajo la acción de los imanes del inductor. Dado que el inductor está girando, el campo magnético que actúa sobre las cuatro zapatas cambia de sentido cuando el rotor gira 90º (se cambia de polo N a polo S), y su intensidad pasa de un máximo, cuando están las piezas enfrentadas como en la figura, a un mínimo cuando los polos N y S están equidistantes de las piezas de hierro.
Son estas variaciones de sentido y de intensidad del campo magnético las que inducirán en las cuatro bobinas una diferencia de potencial (voltaje) que cambia de valor y de polaridad siguiendo el ritmo del campo.
La frecuencia de la corriente alterna que aparece entre los terminales A-B se obtiene multiplicando el número de vueltas por segundo del inductor por el número de pares de polos del inducido ( en nuestro caso 2), y el voltaje generado dependerá de la fuerza de los imanes (intensidad del campo), la cantidad de vueltas de almbre de las bobinas y de la velocidad de rotación.

Para una mejor explicacion del funcionamiento les dejo este link en el cual podran observar una aplicacion java que nos mostrara el funcionamiento de un generador de corriente elemental